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Oxidants are important in the regulation of signal transduction and gene expression. Multiple
classes of genes are transcriptionally activated by oxidants and are implicated in different
phenotypic responses. In the present study, we performed differential mRNA display to elucidate
genes that are induced or repressed after exposure of rat lung epithelial (RLE) cells to H202 or
crocidolite asbestos, a pathogenic mineral that generates oxidants. After 8 or 24 hr of exposure,
RNA was extracted, reverse transcribed, and amplified by polymerase chain reaction with
degenerate primers to visualize alterations in gene expression. The seven clones obtained were
sequenced and encoded the mitochondrial genes, NADH dehydrogenase subunits ND5 and ND6,
and 16S ribosomal RNA. Evaluation of their expression by Northern blot analysis revealed
increased expression of 16S rRNA after 1 or 2 hr of exposure to H202. At later time periods (4
and 24 hr), mRNA levels of 16S rRNA and NADH dehydrogenase were decreased in H202-
treated RLE cells when compared to sham controls. Crocidolite asbestos caused increases in 1 6S
rRNA levels after 8 hr of exposure, whereas after 24 hr of exposure to asbestos, 16S rRNA levels
were decreased in comparison to sham controls. In addition to these oxidants, the nitric oxide
generator spermine NONOate caused similar decreases in NADH dehydrogenase mRNA levels
after 4 hr of exposure. The present data and previous studies demonstrated that all oxidants
examined resulted in apoptosis in RLE cells during the time frame where alterations of
mitochondrial gene expression were observed. As the mitochondrion is a major organelle that
controls apoptosis, alterations in expression of mitochondrial genes may be involved in
the regulation of apoptosis. Environ Health Perspect 106(Suppl 5):1191-1195 (1998).
http.//ehpnetl.niehs.nih.gov/docs/1998/Suppl-5/1 191-1 195janssen/abstract.html
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Alveolar epithelium is a major target for
oxidant stress as a result of inhalation of oxi-
dant gases or pathogenic minerals, including
asbestos, which is implicated in the develop-
ment of bronchogenic carcinoma arising in
the tracheobronchial epithelium of asbestos
workers (1). Furthermore, the elicitation of

an inflammatory response that occurs after
inhalation of these toxicants also generates
several reactive oxygen or nitrogen species
(ROS/RNS) with potent reactivities. The
response of the pulmonary epithelial cell to
oxidative stress may depend on the type and
concentration of oxidant encountered. For
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instance, low levels of ROS/RNS can evoke
adaptive responses that involve the induc-
tion of antioxidant defenses or DNA repair
proteins that enable cells to become resistant
to conditions of extensive oxidative stress
(2). Known genes induced by oxidants
include antioxidant enzymes, metalloth-
ionein, hemeoxygenase, etc. In contrast,
exposure of alveolar epithelial cells to high
levels of ROS/RNS can result in apoptosis
or necrosis (2,3).

It is unclear whether the epithelial cells
respond to H202, nitric oxide ('NO), or
asbestos with expression of the same classes
of genes. Different sources of oxidants may
evoke unique genetic responses that may
lead to distinct functional end points. For
instance, in bacteria, different genetic regu-
Ions coordinate the expression of distinct
classes of genes in response to different oxi-
dants (4,5). These OxyR and SoxR/S regu-
Ions activate expression of genes induced in
response to peroxide or superoxide anion
radical (02-)-generating agents, respec-
tively. Many of the activated genes encode
protein important in antioxidant defense
or DNA repair (4,5).

Conceivably, mammalian cells may also
activate distinct genes in response to differ-
ent classes of oxidants. In order to examine
this, we performed differential mRNA dis-
play, a polymerase chain reaction (PCR)-
based approach that allows the investigation
of all expressed RNA species (6,7). With
the use of degenerate primers and four
classes of 3' oligo DT primers, multiple
classes of genes can be visualized on a
sequencing gel and provide a representation
of expressed genes. The technique has an
advantage over conventional subtractive
hybridization approaches, in that it allows
the simultaneous evaluation of mRNAs
that are induced or repressed. Use of this
approach in different models has resulted
in identification of numerous genes impor-
tant in different physiologic processes as
well as disease (8-11).

Here, we report the modulation of two
mitochondrial genes, NADH dehydroge-
nase, subunits ND5 and 6, and 16S rRNA
in rat lung epithelial (RLE) cells exposed to
either H202, asbestos or the NO generator
spermine NONOate. After initial exposure
to H202, levels of 16S rRNA are increased
but decrease at later time periods that coin-
cide with the development of apoptosis.
mRNA levels ofNADH dehydrogenase are
decreased in comparison to sham controls
after 1 to 24 hr of exposure to spermine
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NONOate or H202. Transient increases in
levels of 16S rRNA occur in response to
asbestos and are followed by decreases com-
pared to controls after 24 hr of exposure.
The alterations in expression of these mito-
chondrial genes coincide with the develop-
ment of apoptosis, suggesting a link
between alterations in mitochondrial tran-
scription and apoptosis.

Methods
CAli Culku and Exposue
to Test Agents

The rat alveolar epithelial cell line
RLE-6TN was propagated in Dulbecco's
modified Eagle's medium/F12 containing
penicillin and streptomycin and 10% new-
born bovine serum (NBS). RLE-6TN
expresses characteristics of alveolar type II
cells (12). Twenty-four hours before the
addition of test agents, cells were switched
to 1% NBS. Cells were exposed to 200 pM
H202 or crocidolite asbestos for 8 hr from
the National Institute of Environmental
Health Sciences and total RNA was
extracted for reverse transcription and PCR.

RNA Etaction and Synthesis
ofcDNA
Total RNA was extracted in guanidinium
isothiocyanate according to standard proce-
dures (13). Contaminating DNA was
removed by incubation with RNAse-free
RNAse (Promega, Madison, WI) for 1 hr at
37°C. RNA was re-extracted with phenol
and precipitated. Two micrograms of RNA
were used in differential display reactions as
described by the manufacturer's instruc-
tions (Genhunter, Nashville, TN). Briefly,
RNA was reverse transcribed with Moloney
murine leukemia virus reverse transcriptase
using an oligo dT primer anchored to the
beginning of the poly (A)tail for 1 hr at
37°C. The reaction was terminated by heat
inactivation and cDNAs were stored at
-20°C until analysis.

PCR, Reamplification, and Cloning of
Differentiall Expressed Genes
cDNAs were PCR amplified in the presence
of 33P-deoxyadenosine triphosphate on a
Perkin Elmer thermocycler 9600 (Perkin
Elmer, Branchburg, NJ) using cycling con-
ditions as follows: denaturing 95°C, 30 sec;
annealing 40°C, 2 min; extension at 72°C,
30 sec for 40 cycles, followed by a final
extension at 72°C for 5 min. PCR products
were resolved on a 6% denaturing poly-
acrylamide sequencing gel in Tris-borate-
EDTA-buffer, dried, and exposed to

Kodak-X-omat film. Differentially expressed
bands were cut out of the sequencing gel,
and reamplified using the same PCR condi-
tions and primer sets. To verify differential
expression by Northern blotting, we per-
formed reamplification in the presence of
25 pCi 32P-deoxycytidine triphosphate
(dCTP). cDNAs were next cloned into a
Bluescript SK+ vector (Stratagene, La Jolla,
CA) and sequenced using standard proce-
dures (14). Sequences were checked using
the Genbank database.

Northern Blot Analysis
Ten micrograms of RNA was electro-
phoresed on formaldehyde 3-(N-mor-
pholino)propanesulfonic acid agarose gels,
blotted onto nitrocellulose using a semi-
dry turboblotter system (Schleicher and
Schuell, Keene, NH). Blots were prehy-
bridized overnight in 50% formamide, 4X
standard sodium citrate (SSC), Denhards,
and 10 pg/ml salmon testis DNA at 50°C.
NADH dehydrogenase or 16S rRNA
probes, generated by PCR, were added in
hybridization fluid for 16 hr, and blots
were washed in a series of SSC and sodium
dodecyl sulfate washes as described before.
Hybridized signals were visualized by
autoradiography and quantitated by phos-
phoimage analysis. Selected blots were
hybridized with glyceraldehyde-3-phos-
phate dehydrogenase cDNA to verify the
RNA content between groups and revealed
approximately 10% variability of hybridiza-
tion signals as has been published elsewhere
(15) (data not shown).
Evaluation ofApoptosis
The development of apoptosis in RLE
cells exposed to H202 or spermine
NONOate was evaluated by flow cytome-
try using propidium iodide to measure
DNA content. The percentage of cells
undergoing apoptosis characterized by
their hypolipoid DNA content was quan-
titated. The use of this technique has been
described elsewhere (16) and confirmed
by other techniques (3).
StatisicalA lysis
Data were analyzed by ANOVA with the
use of Duncan's procedure to adjust for
multiple comparisons.
Results
The use of different combinations of
primers in differential display reactions
led to unique patterns of mRNA species,
observed after electrophoresis on a sequenc-
ing gel (Figure 1). Multiple bands are either

increased or decreased after exposure to

H202 or asbestos in comparison to sham
controls (Figure 1). These bands were
excised from the sequencing gel, reampli-
fied in the presence of 32P-dCTP and used
in Northern blot analysis. Performing these
Northern blots revealed the presence of
about 80% false-positive bands that could
either not be detected or were not affected
when evaluated by Northern blot analysis
(data not shown).
We next cloned seven differentially

expressed species into an SK+ superscript
vector and sequenced the clones. Sequence
analysis revealed that five clones encoded
the 16S rRNA species, whereas the other
mRNA was identified as NADH dehy-
drogenase, subunits ND5 and ND6.
Interestingly, both genes are encoded in
the mitochondria.

To determine the time frame of alter-
ations in mRNA levels of NADH dehy-
drogenase or 16S rRNA, we performed a
time-course study with H202. Exposure
to 300 pM H202 caused decreases in
NADH dehydrogenase mRNA levels after
time periods of exposure that range from
1 to 24 hr (Figure 2, A). In contrast, as
demonstrated in Figure 2B, early increases

Control Asbestos H202
La L

Figure 1. Example of a differential display sequencing
gel demonstrating modulation of expressed RNAs after
exposure to 200 pM H202 or 5 pg/cm2 of crocidolite
asbestos. Cells were treated with agents for 8 hr and
RNA extracted, reverse transcribed, and PCR amplified
in the presence of 33P and primer combinations
T12MG-AP-1 (Genhunter). The arrow represents 16S
rRNA. Duplicate lanes are shown for each group.
NADH dehydrogenase was identified using additional
differential display reactions (not shown here).

Environmental Health Perspectives * Vol 106, Supplement 5 * October 19981192



OXIDANTS AND MITOCHONDRIAL GENE EXPRESSION

in mRNA expression of 16S rRNA occur
after 1-hr exposure to H202, whereas after
24-hr exposure to H202, the expression of
16S rRNA is decreased. The differences in
hybridization signal in the sham control
groups apparent at different time points
evaluated are due to hybridization of

22hr

different blots. Thus, fluctuations in
steady-state levels of 16S rRNA or NADH
dehydrogenase mRNA in control cultures
over time cannot be evaluated here.

Because asbestos caused an increase in
the band representing 16S rRNA on the
sequencing gel, we evaluated its expression

4hr
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1

24hrT
_

II

2 hr
T
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by Northern blot analysis. As shown in
Figure 3, asbestos caused increases in 16S
rRNA after 8 hr of exposure, whereas 24 hr
postexposure, 1 6S rRNA was decreased
compared to sham controls. Interestingly,
these alterations were not restricted to RLE
cells. Exposure of rat pleural mesothelial
(RPM) cells to asbestos for 24 hr also led to
decreased expression of 16S rRNA without
affecting expression of glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) (17).
We next examined whether the *NO

donor, spermine NONOate, caused similar
alterations in mRNA expression. As shown
in Figure 4, dosage-dependent decreases in
mRNA levels ofNADH dehydrogenase are
observed following 4 hr of exposure to
spermine NONOate. Relative decreases in
NADH dehydrogenase mRNA induced by
300 pM and 1 mM spermine NONOate,
respectively, compared to sham controls
are 29 and 13% after 2 hr, and 45 and
60% after 4 hr. At these time points, no
alterations in the expression of 16S rRNA
were observed in response to spermine
NONOate exposure.

Exposure of RLE cells to asbestos or
ROS/RNS at concentrations examined

A
fa 4°12hr !4hr T
AS

0 300FM 0 300 iM 0 300FM 0 300 111M

* -_u I0 'li H a
Control H202 Control IH2O2 Control H202 Control H202

Figure 2. Northern blot analysis of (A) NADH dehydrogenase and (B) 16S rRNA in RLE cells exposed to 300 pM
H202 for 1, 2, 4, or 24 hr. RNA was extracted, blotted, and incubated with NADH dehydrogenase and 16S rRNA
probes generated by PCR. Blots were quantitated by phosphoimage analysis and expressed as relative units
(mean± SEM) on the Y-axis. Control = sham control, H202 = 300 pM (n= 1-2/group, indicated under each bar
graph). Note that the differences in hybridization signals in the control groups at different time points is due to dif-
ferent hybridization conditions of separate blots. Percent changes in NADH dehydrogenase mRNA in H202-treated
cells compared to controls at different time points are 1 hr, -90%; 2 hr, -33%; 4 hr, -46%; and 24 hr, -65%.
Percent changes in 16S rRNA in H202-treated cells compared to controls at different time points are 1 hr, + 130%;
2 hr, + 30%; 4 hr, -35%; and 24 hr, -70%. * p< 0.05, ANOVA.
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Figure 3. Quantitation of a Northern blot analysis evaluating 16S rRNA in RLE or RPM cells exposed to crocidolite
asbestos for 8 or 24 hr; n=2/group. The GAPDH hybridization signal of the identical blot is published elsewhere
(17) and does not vary. Blots were quantitated by phosphoimage analysis and expressed as mean ± SEM, and rel-
ative units are indicated on the Y-axis. *p<0.05, ANOVA.
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Figure 4. Northern blot analysis of (A) NADH dehydro-
genase or (B) 16S rRNA in RLE cells exposed to the
'NO donor, spermine NONOate for 2 or 4 hr. Cells
were exposed to 300 pM or 1 mM spermine NONOate,
which releases NO over a time frame of 2-4 hr, and
RNA was extracted for evaluation by Northern blot
analysis. Blots were quantitated by phosphoimage
analysis (n=2/group, mean ±SEM) and relative units
are expressed on the Y-axis. Note that the differences
in hybridization signals in the control groups at differ-
ent time points are due to different hybridization condi-
tions of separate blots. * p< 0.05, ANOVA.
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Figure 5. Quantitation of apoptosis in RLE cells after
exposure to H202. RLE cells were exposed to 100 pM
of H202 and analyzed for DNA content via propidium
iodide staining and flow cytometry after 4, 8, and 24 hr
of exposure. * p<0.05, ANOVA.

here causes apoptosis (3). To determine
whether apoptosis is observed during the
time frame of alterations in RNA expres-
sion, we performed flow cytometry and
analyzed cells for DNA content. As
demonstrated in Figure 5, exposure of RLE
cells to H202 causes increases in the per-
centage of cells undergoing apoptosis char-
acterized by a hypodiploid DNA content
as early as 4 hr postexposure. These results
demonstrate that alterations in mitochon-
drial gene expression correlate with an
apoptotic response in RLE cells.

Discussion
Modulation of gene expression is critical to
the maintenance of normal physiologic
function, as well as to the adaptation to
various sources of stress. In the present
study, we performed differential mRNA
display to determine the alterations in gene
expression evoked by the oxidants H202 or
asbestos and determined whether similar
genes are affected after exposure to NO.
Using differential mRNA display, we
report that two mitochondrial genes are
modulated following exposure to H202,
asbestos, or NO. Transient increases in
expression of 16S rRNA are observed after
exposure to H202 or asbestos that are fol-
lowed by decreases after 24 hr of exposure.
Similarly, mRNA expression of NADH
dehydrogenase is depressed after exposure

to these ROS/RNS. These changes in
mitochondrial gene expression were
observed independent of alterations in
expression of GAPDH used as a house-
keeping gene. Furthermore, these ROS/
RNS led to increases in expression of
protooncogenes (3) or the oxidative
stress-responsive genes, manganese con-
taining superoxide dismutase or hemeoxy-
genase (18) during the time periods
examined here. These findings suggest the
selective downregulation of mitochondrial
gene transcription.

Using the same technology, Crawford
et al. (19) recently reported that oxidative
stress down modulates mitochondrial
RNAs. Exposure of HA-1 (Chinese ham-
ster HA-1) fibroblasts to H202 causes
decreases in 16S rRNA, NADH dehydro-
genase subunit 6, ATPase subunit 6, and
cytochrome oxidase subunits I and III
(19). Importantly, the degradation of 16S
rRNA was dependent on calcium, as the
calcium chelator BAPTA-AM prevented
the H202-induced degradation of 16S
rRNA (19). Our studies demonstrate that
these findings extend to RLE and RPM
cells and different forms of oxidative stress.
In support of these findings, studies by
others employing peroxisome proliferators
or hypoxanthine-xanthine oxidase have
revealed alterations in expression of riboso-
mal RNAs or NADH dehydrogenase
(20,21). Importantly, in models of aging
and diabetes that involve oxidative stress,
both of these mitochondrial genes were
affected as well (22,23). The increases and
decreases in RNAs observed in these
models may reflect the type or duration of
oxidative stress encountered (20,21).

It is unclear to date whether these
alterations in mitochondrial gene expres-
sion are associated with decreases in pro-
tein levels or mitochondrial function.
Importantly, NADH dehydrogenase is
located in the electron transport chain at a
site critical in the formation of 02--
(24,25). It has been demonstrated that
aberrant function ofNADH dehydrogenase

or excess levels of the substrate NADH can
promote the formation of 02-- in mito-
chondria. Conceivably, oxidant-induced
downmodulation of mitochondrial gene
transcription may prevent the further for-
mation of oxidants. Alternatively, the
increased exposure to oxidants may damage
mitochondrial function and repress tran-
scription. On the basis of the the present
findings, the mechanism of modulation of
mitochondrial gene expression by oxidants
is undear.

Interestingly, the downregulation of
mitochondrial gene transcription occurs
independent of alterations of mRNA
expression of genes encoded in the nudeus
(17-19) and correlates with the develop-
ment of apoptosis that occurs in RLE cells
exposed to these ROS/RNS (3). Recently,
mitochondria have been recognized as an
organelle important in the control of apop-
tosis (26,27). Release of cytochrome c
from mitochondria appears to be a major
controlling factor in the apoptotic response
of cells including the activation of caspases
that activate the death cascade (26,27). It
is unknown whether alterations in mito-
chondrial transcription play a role in this
sequence of events. Our findings, which
illustrate that depression of mitochondrial
gene expression coincides with the apop-
totic response in RLE cells, suggest a possi-
ble link between these events. Further
investigation into the mechanisms of regu-
lation of 16S rRNA and NADH dehy-
drogenase transcription, as well as the
consequence of altered expression of these
genes, is needed to address this question.

In summary, our study has utilized the
differential display technique and reports
the modulation of expression of 16S rRNA
and NADH dehydrogenase, two mitochon-
drial genes in response to H202 or an *NO
donor, and the modulation of 16S rRNA in
response to asbestos. In view of the impor-
tance of the mitochondria in the regulation
of apoptosis, the modulation of mitochon-
drial gene expression by ROS/RNS may be
linked to this end point.
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